

Ihr zuverlässiger Partner

EAS®-HT

Zuverlässige <u>High Torque</u> Sicherheitskupplungen für Schwerlastanwendungen

Immer im Einsatz

EAS®-HT Sicherheitskupplungen für Schwerlastanwendungen erhöhen die Verfügbarkeit Ihrer Produktionsanlagen.

Sie steigern Ihren Ertrag, verhindern Überlastschäden und sparen Kosten.

EAS®-HT Sicherheitskupplungen

der zuverläsige, zerstörungsfreie Überlastschutz

- freischaltend
- stufenlos einstellbar
- exakt
- kompakt
- robust

Geprüfte Sicherheit

Seit mehr als 40 Jahren dimensionieren, entwickeln und fertigen wir Sicherheitskupplungen für Schwerlastanwendungen.

Auf die geprüfte Zuverlässigkeit und Sicherheit unserer Schwerlastkupplung können Sie sich verlassen.

Experten statt Experimente

denn Sicherheit duldet keine Kompromisse

EAS®-HT kurze gelagerte Nabe

Drehmoment: 4 bis 40 kNm

Größe 7 bis 10 Type 4050._0400

- direkter Anbau des Antriebselementes am gelagerten, abtriebsseitigen Flansch der Kupplung.
- Die Lagerung kann hohe Zusatzkräfte in axialer und radialer Richtung aufnehmen.

Seite 6

EAS®-HT lastic

Drehmoment: 4 bis 40 kNm

Größe 7 bis 10 Type 4053._0400

- Zweiwellenausführung mit elastischer, formschlüssiger Kupplung
- dämpft stoßartige Belastungen

Seite 8

EAS®-HT Flanschversion

Drehmoment: 7,5 bis 440 kNm

Größe 0 bis 6 Type 4060.7_400

- kompaktes, einbaufertiges Modul
- einfach im Antriebsstrang integrierbar

Seite 10

EAS®-HT Bogenzahn

Drehmoment: 7,5 bis 440 kNm

Größe 0 bis 6 Type 4061.7_400

- Zweiwellenausführung mit Bogenzahnkupplung
- robust und temperaturunempfindlich
- hohe Verlagerungsfähigkeit

Seite 12

EAS®-HT spielfrei

Drehmoment: 7,5 bis 140 kNm

Größe 0 bis 4 Type 4062.704_0

- Zweiwellenausführung mit drehsteifer, spielfreier Lamellenpaketkupplung
- hohe Drehsteifigkeit
- spielfreie Drehmomentübertragung
- wartungsfrei

Seite 14

EAS®-HT lastic Bolzen

Drehmoment: 40 bis 260 kNm

Größe 3 bis 5 Type 4063.704_0

- Zweiwellenausführung mit elastischer, formschlüssiger Kupplung
- dämpft stoßartige Belastungen

Seite 16

EAS®-HT Optionen

Kundenspezifische Bauformen Tieftemperaturausführung Alternative Wellenverbindungen ATEX

Seite 18

EAS®-Elemente

- Standard
- verstärkt

- Drehmoment- bzw. kraftbegrenzende Elemente
- Einbau in zwei zueinander gelagete Flansche
- Integration in bestehende Konstruktionen möglich

Seite 20

Technische Erläuterungen

Allgemein Vorauswahl Verlagerungsfähigkeit Seite 23

Weitere branchenoptimierte EAS®-Sicherheitskupplungen

High-Speed-Kupplungen EAS®-HSE

Drehmoment: 100 bis 8.400 Nm

Größe 02 bis 0 Type 404_ . _04_ _ Zuverlässiger Überlastschutz bei hohen Drehzahlen

Für ausführliche Informationen sowie detaillierte technische Daten und Abmessungen beachten Sie bitte unseren Produktkatalog EAS®-HSC/ EAS®-HSE.

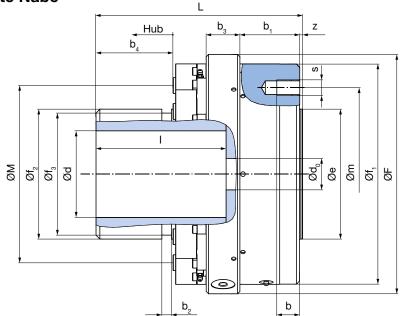
Extruderkupplungen EAS®-dutytorque

Drehmoment: 70 bis 17.000 Nm

Größe 2 bis 9 Type 4043. _1400 Schützen Extruderschnecken vor teuren Überlastschäden

Für ausführliche Informationen sowie detaillierte technische Daten und Abmessungen beachten Sie bitte unseren Produktkatalog EAS®-dutytorque.

Rostfreie Ausführung



Korrosionsgeschütze Sicherheitskupplungen für Umwelt- und Abwassertechnik

Kurze gelagerte Nabe

Type 4050._0400 Größe 7 bis 10

Beste	ellnum	mer										
/	/ 4	0	5	0	·	0	4	0	0	/	/ _	/ _
Größe 7 bis 10	Drehmo niedrig mittel hoch sehr hoo	omentbe	reich ¹⁾		4 5 6 7					Bohrung ¹⁾ Ø d ^{H7}	Bohrung Ø d₀	Drehmoment- einstellwert [kNm]

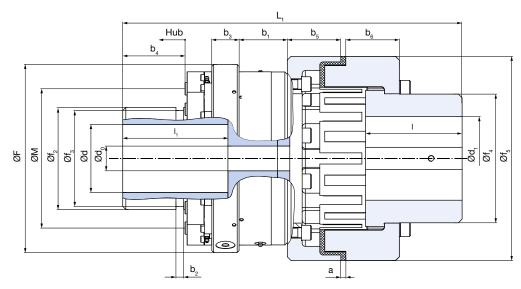
Beispiel: Bestellnummer 8 / 4050.60400 / 90 / 35 / 8

1) Lage der Passfedernut zu Anschraubbohrung "s" im Druckstück nicht definiert. Definierte Lage auf Anfrage möglich.

Tachnicoho D	oton				Gré	öße	
recrimscrie D	Technische Daten				8	9	10
	Type 4050. 4 0400	$M_{\scriptscriptstyle G}$	[kNm]	1,3 - 2,6	1,6 - 3,2	4 - 8	5 - 10
	Anzahl I	EAS®-EI	emente	2	2	2	2
	Type 4050. 5 0400	$M_{\rm G}$	[kNm]	2 - 4	3,2 - 6,4	6 - 12	10 - 20
Grenz- drehmomente	Anzahl I	Anzahl EAS®-Elemente			4	3	4
für Überlast	Type 4050. 6 0400	$M_{\scriptscriptstyle G}$	[kNm]	2,6 - 5,2	4,8 - 9,6	8 - 16	15 - 30
	Anzahl EAS®-Elemente			4	6	4	6
	Type 4050. 7 0400	[kNm]	4 - 8	6,5 - 13	12 - 24	20 - 40	
Anzahl		EAS®-EI	emente	6	8	6	8
Größe EAS®-Elemente				0	0	1	1
Maximale Drehza	Maximale Drehzahl n _{max}		[min ⁻¹]	3000	2800	2500	2200
Hub des Bolzens	Hub des Bolzens bei Überlast		[mm]	6	6	8	8

Max. zulässige Kräfte am Flanschanschluss					Größe					
				7	8	9	10			
Radialkräfte	Time 4050 0400	F _R	[kN]	15	20	30	40			
Axialkräfte	Type 40500400	F _A	[kN]	10	15	20	30			

Massanträgheitememer	iobto		Größe						
Massenträgheitsmomer	ichte	7	8	9	10				
EAS®-Nabenseite Type 4050.	[kgm²]	0,18	0,38	1,05	2,37				
Flanschseite Type 4050.	_0400 J	[kgm²]	0,17	0,38	1,3	2,65			
Gewichte bei d _{max} Type 4050.	_0400	[kg]	47	76	145	232			


Dobuman Immi			Gré	Größe						
Bohrungen [mm]		7	8	9	10					
EAS®-Nabenseite	d _{max}	90 ^{H7}	110 ^{H7}	135 ^{H7}	160 ^{H7}					
Flanschseite	d _{0 max}	30	40	48	58					

Maß- und Konstruktionsänderungen vorbehalten.

Maße		Grö	іβе	
[mm]	7	8	9	10
b	25	30	35	35
b ₁	66	78	94	110
b_2	12,5	12,5	15	15
b ₃	44	44	56	56
b ₄	70,5	100,5	119,3	159,3
e _{h7}	147	165	242	276
F	260	304	380	450
f ₁	237,5	279,5	359,5	417,5
f ₂	120	165	190	245
f ₃	110	155	180	230
L	228	270	330	387
I	140	170	210	250
M	180	225	270	340
m	190	220	285	325
s	8xM16	8xM20	8xM24	12xM24
Z	4	4	5	6

Type 4053._0400
Größe 7 bis 10

Bes	Bestellnummer													
	/	4	0	5	3		0	4	0	0	/ _ /	/ <u> </u>	/ _ ,	′ _
Größe 7 bis 10		Drehm niedrig mittel hoch sehr ho		ereich		4 5 6 7					Bohrung Ø d ^{H7}	Bohrung Ød ₀ ^{H7}	Bohrung Ø d ₁	Drehmoment- einstellwert [kNm]

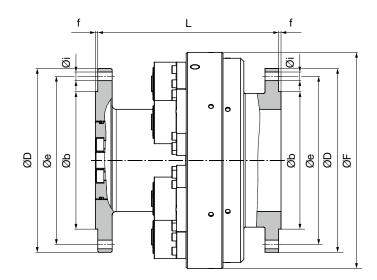
Beispiel: Bestellnummer 8 / 4053.60400 / 90 / 35 /115 / 8

Technische Da	nton				Grö	iße	
rechnische Da				7	8	9	10
	Type 4053. 4 0400	M _G	[kNm]	1,3 - 2,6	1,6 - 3,2	4 - 8	5 - 10
	An	zahl EAS®-I	Elemente	2	2	2	2
	Type 4053. 5 0400	M_{G}	[kNm]	2 - 4	3,2 - 6,4	6 - 12	10 - 20
Grenz- drehmomente	An	zahl EAS®-I	Elemente	3	4	3	4
für Überlast	Type 4053. 6 0400	M_{G}	[kNm]	2,6 - 5,2	4,8 - 9,6	8 - 16	15 - 30
	An	zahl EAS®-I	Elemente	4	6	4	6
	Type 4053. 7 0400	M_{G}	[kNm]	4 - 8	6,5 - 13	12 - 24	20 - 40
	Anzahl EAS®-Elemente			6	8	6	8
Größe EAS®-Elem	nente			0	0	1	1
Maximale Drehza	hl	n _{max}	[min ⁻¹]	2250	2000	1500	1400
Hub des Bolzens	bei Überlast		[mm]	6	6	8	8
	Zulässige axia	ΔK_a	[mm]	±2,5	±2,5	±2,5	±2,5
Elastische Wellenkupplung	Verlage- radi	al ΔK _r	[mm]	0,3	0,3	0,3	0,3
Trenenkuppiding	rungen 1) winl	dig ΔK _w	[mm]	0,3	0,3	0,3	0,3
Nenn- und Maxim	nalmomente,	T _{KN}	[kNm]	5,8	9,9	20,5	28
elastische Kupplu	elastische Kupplung		[kNm]	8,3	14,5	27	66

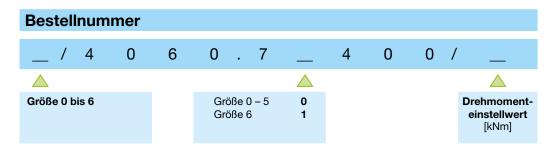
Massanträgha	itamamanta und	Cowie	abta		Größe						
Massenträgheitsmomente und Gewichte				7	8	9	10				
Massenträgheits-	EAS®-Nabenseite	J	[kgm²]	0,18	0,38	1,05	2,37				
momente	momente elastische Seite			0,57	1,62	5,0	10,7				
Gewichte bei d _{max}			[kg]	85	154	282	464				

Pohrungan [mm]			Grö	öße	
Bohrungen [mm]		7	8	9	10
EAS®-Nabenseite	d _{max}	90 ^{H7}	110 ^{H7}	135 ^{H7}	160 ^{∺7}
Lagerflansch	d _{o max}	30	40	48	58
Elastische Seite	d _{1 max}	115 ^{H7}	135 ^{H7}	180 ^{H7}	200 ^{H7}

Маве	Größe			
[mm]	7	8	9	10
а	5,5	8	8	8
b ₁	66	78	94	110
b_2	12,5	12,5	15	15
b ₃	44	44	56	56
b ₄	70,5	100,5	119,3	159,3
b ₅	76	86,5	102	108
b ₆	76	86,5	102	108
F	260	304	380	450
$\mathbf{f_2}$	120	165	190	245
f ₃	110	155	180	230
f ₄	164	208	275	289
f ₅	265	330	415	480
L,	469,5	548,5	668	754
1	137	156	196	220
I ₁	140	170	210	250
M	180	225	270	340


Maß- und Konstruktionsänderungen vorbehalten.

1) Die Werte beziehen sich auf 1500 min⁻¹

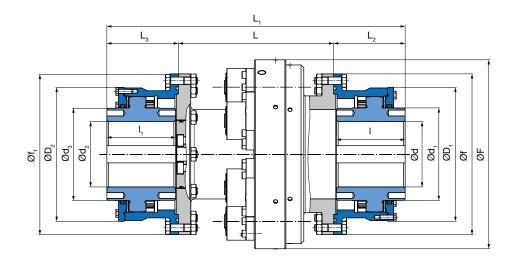


Flanschversion

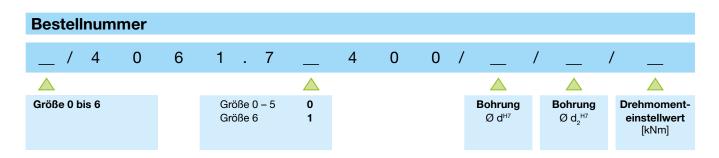
Type 4060.00400 Größe 0 bis 6

Beispiel: Bestellnummer 5 / 4060.00400 / 200

Technische Daten			Größe								
rechnische Daten	Teominome Datem			1	2	3	4	5	6		
Grenzdrehmomente für Überlast	M_{G}	[kNm]	7,5 - 15	12,5 - 25	20 - 40	37,5 - 75	70 - 140	125 - 250	220 - 440		
Anzahl EAS®-Elemente			6	8	6	8	12	10	10		
Größe EAS®-Elemente			0	0	1	1	1	2	2 1)		
Maximale Drehzahl	n _{max}	[min ⁻¹]	2000	1750	1500	1250	1000	900	750		
Hub des Bolzens bei Überlast		[mm]	6	6	8	8	8	12	12		


Massenträgheitsmomente	Massenträgheitsmomente					Größe							
und Gewichte			0	1	2	3	4	5	6				
EAS®-Elementeseite	J	[kgm²]	0,25	0,5	1,16	2,71	5,51	16,29	27,87				
EAS®-Druckflanschseite	J	[kgm²]	0,19	0,37	0,96	2,05	4,22	10,29	19,3				
Gewichte bei d _{max}		[kg]	56	77	142	212	303	627	814				

Maße				Größe			
[mm]	0	1	2	3	4	5	6
b _{h7}	175	230	255	310	340	460	540
е	214	269	306	360	400	531	618
D	234	292	330	390	430	567	660
F	275	320	380	455	545	640	740
f	3	3	4	4	5	6	6
i	11	13	13	17	17	21	25
L	226	243	298	312	328	476	485


Maß- und Konstruktionsänderungen vorbehalten.

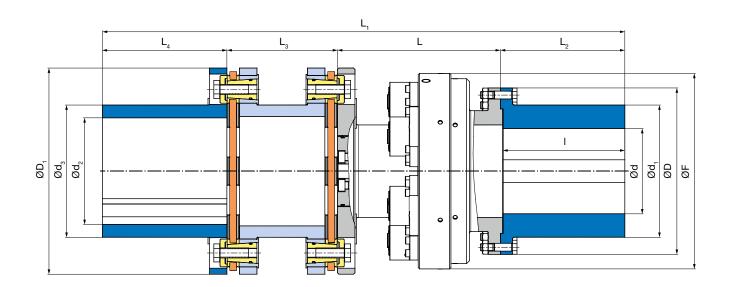
Bogenzahn

Type 4061.00400 Größe 0 bis 6

Beispiel: Bestellnummer 4 / 4061.00400 / 180 / 200 / 90

Technische	Datas							Größe			
rechnische	Daten				0	1	2	3	4	5	6
Grenzdrehmor	nente für Üb	erlast	M _G	[kNm]	7,5 - 15	12,5 - 25	20 - 40	37,5 - 75	70 - 140	125 - 250	220 - 440
Anzahl EAS®-El	lemente				6	8	6	8	12	10	10
Größe EAS®-Ele	emente				0	0	1	1	1	2	2 1)
Maximale Drel	hzahl		n _{max}	[min ⁻¹]	2000	1750	1500	1250	1000	900	750
Hub des Bolze	ns bei Überl	ast		[mm]	6	6	8	8	8	12	12
_	Zulässige	axial	ΔK_{a}	[mm]	±2	±3	±3	±3	±3	±4	±4
Bogenzahn- kupplung	Verlage-	radial	ΔK_r	[mm]	7,5	8,6	10,2	11,7	12,4	18,4	20,6
		[mm]	1,25	1,25	1,25	1,25	1,25	1,25	1,25		
Nenn- und Ma	Nenn- und Maximalmomente, T_{KN} [kN		[kNm]	12,5	25	40	63	100	250	400	
Bogenzahnku	pplungupplur	ng	T _{K max}	[kNm]	25	50	80	12,6	200	500	800

¹⁾ Die Werte beziehen sich auf 1500 min⁻¹ 2) Pro Gelenk


Massenträgheitsmomente und Ge-			Größe							
wichte			0	1	2	3	4	5	6	
EAS®-Druckflanschseite	J	[kgm ²]	0,27	0,65	1,48	3,33	6,43	19,17	39,74	
EAS®-Elementeseite	J	[kgm ²]	0,34	0,78	1,69	3,99	7,72	25,18	48,3	
Gewichte bei d _{max} / d _{2max}		[kg]	83	132	220	345	488	1053	1523	

Bohrungen [mm]			Größe							
		0	1	2	3	4	5	6		
EAS®-Druckflanschseite	d _{max}	95	130	150	185	210	285	340		
EAS®-Elementeseite	d _{2 max}	95	130	150	185	210	285	340		

Mag und	Konstruktion	sänderungen	vorbobaltor
iviais- uriu	NOUSTIANTION	Sanuerungen	voibellaitei

Maße				Größe			
[mm]	0	1	2	3	4	5	6
d ₁	135	185	210	255	290	400	480
d_3	135	185	210	255	290	400	480
D ₁	195	251	288	337	375	502	584
D ₂	195	251	288	337	375	502	584
F	275	320	380	455	545	640	740
f	234	292	330	390	430	567	660
f ₁	234	292	330	390	430	567	660
L	226	242,5	298	312	328	476	485
L,	434	502,5	588	685	740	1012	1125
$L_{\scriptscriptstyle 2}$	104	130	145	186,5	206	268	320
L ₃	104	130	145	186,5	206	268	320
1	100	125	140	180	200	260	310
l,	100	125	140	180	200	260	310

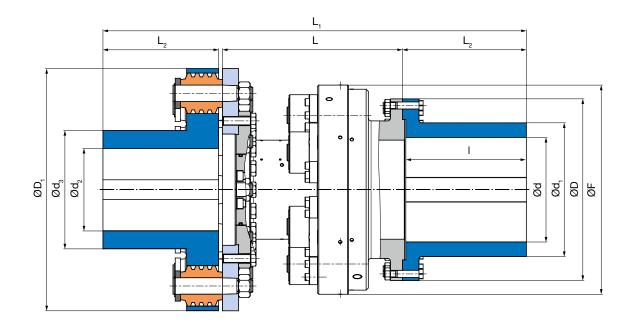
spielfrei Type 4062.00400 Größe 0 bis 4

Beispiel: Bestellnummer 4 / 4062.00400 / 180 / 200 / 90

Tachniacha D	oton						Größe		
Technische D	lectifische Daten					1	2	3	4
Grenzdrehmome	nte für Über	last	$M_{\scriptscriptstyle G}$	[kNm]	7,5 - 15	12,5 - 25	20 - 40	37,5 - 75	70 - 140
Anzahl EAS®-Elem	nente				6	8	6	8	12
Größe EAS®-Elem	ente				0	0	1	1	1
Maximale Drehza	hl		n _{max}	[min ⁻¹]	2000	1750	1500	1250	1000
Hub des Bolzens	bei Überlas	it		[mm]	6	6	8	8	8
	Zulässige	axial	ΔK_{a}	[mm]	1,6	1,7	2,1	2,3	2,3
Drehsteife Wellenkupplung	Verlage-	radial	ΔK_r	[mm]	1,0	1,0	1,1	1,3	1,4
Helicikuppiung	rungen 1)	winklig	ΔK _w	[°]	0,4	0,4	0,4	0,4	0,4
Nenn- und Maxin	Nenn- und Maximalmomente, T _{KN} [kNm]		[kNm]	22	33	50	73	110	
drehsteife Ganzs	tahlkupplun	g	T _{K max}	[kNm]	44	66	100	146	220

¹⁾ Die Werte beziehen sich auf 1500 min⁻¹

Massanträgha	itomomonto und	obto			Größe			
wassemagne	itsmomente und	Gewi	Citte	0	1	2	3	4
Massenträgheits-	Nabenseite	J	[kgm ²]	0,35	0,76	1,58	3,68	6,56
momente	elastische Seite	J	[kgm²]	0,86	1,73	3,5	7,1	13,95
Gewichte bei d _{max}			[kg]	132	195	308	468	665


Bohrungen [mm]			Größe						
Bonrungen [mm]		0	1	2	3	4			
Nabenseite	d _{max}	120	170	180	220	240			
Elastische Seite	d _{2 max}	140	160	180	210	240			

Маве			Größe		
[mm]	0	1	2	3	4
d ₁	186	230	243	300	321
d ₃	186	215	243	279	321
D	234	292	330	390	430
D ₁	290	332	378	431	492
F	275	320	380	455	545
L	229	245,5	302	316	330
L,	735	811,5	934	1054,5	1173
$L_{_2}$	175	200	225	265	310
L_3	155,6	166	182	208,4	223
L ₄	175	200	225	265	310
I	171	195	219	260	302

Maß- und Konstruktionsänderungen vorbehalten.

lastic Bolzen

Type 4063.00400 Größe 4 bis 6

Beispiel: Bestellnummer 4 / 4063.00400 / 270 / 180 / 90

Technische D	oton					Größe	
rechnische D	aten				4	5	6
Grenzdrehmome	nte für Über	last	M_{G}	[kNm]	40 - 80	72,5 - 145	130 - 260
Anzahl EAS®-Elem	nente				12	10	10
Größe EAS®-Elem	ente				1	2	2
Maximale Drehza	ahl		n _{max}	[min ⁻¹]	1000	900	750
Hub des Bolzens	bei Überlas	t		[mm]	8	12	12
	Zulässige	axial	ΔK_{a}	[mm]	±4	±4	±4
Elastische Wellenkupplung	Verlage-	radial	ΔK_r	[mm]	1,5	1,5	1,5
Helicikuppiung	rungen 1)	winklig	ΔK _w	[mm]	4,6	5,3	6,4
Nenn- und Maxin	nalmomente) ,	T _{KN}	[kNm]	48	100	160
elastische Kuppl	ung		T _{K max}	[kNm]	96	200	320

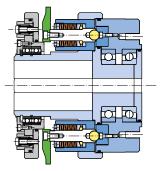
Massenträgheitsmomente und Gewichte			Größe			
			4	5	6	
Massenträgheits-	Nabenseite	J	[kgm²]	6,6	20,02	39,63
momente	elastische Seite	J	[kgm ²]	22,35	55,18	110,68
Gewichte bei d _{max} [kg]		706	1407	1956		

Pohrungon [mm]		Größe			
Bohrungen [mm]		3	4	5	
Nabenseite d _{max}		240	300	340	
Elastische Seite d _{2 max}		225	225	320	

Маве	Größe						
[mm]	4	5	6				
d ₁	321	420	500				
$d_{\scriptscriptstyle 3}$	320	360	448				
D	430	567	660				
D ₁	660	760	920				
F	545	640	740				
L	375	533	543				
L,	946	1201	1231				
$L_{\scriptscriptstyle 2}$	310	350	370				
$L_{\scriptscriptstyle{3}}$	250	300	300				
I	302	342	362				

¹⁾ Die Werte beziehen sich auf 1500 min⁻¹

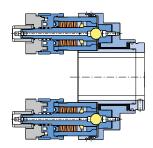
Maß- und Konstruktionsänderungen vorbehalten.


EAS®-HT Optionen

Für die EAS®-HT Kupplungen stehen zusätzlich speziell nach Kundenanforderungen konstruierte Ausführungen und Varianten zur Verfügung.

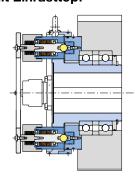
EAS®-HT Kupplungen sind mit weiteren Anbauteilen kombinierbar.

Wir beraten Sie gerne bei der Dimensionierung und Zusammenstellung Ihrer optimalen Ausführung.


EAS®-HT mit automatischer Wiedereinrastung

Nach einer Überlast ist die EAS®-HT Sicherheitskupplung im ausgerasteten Zustand. Durch eine automatische Wiedereinrastung ist es möglich die EAS-HT Sicherheitskupplung ferngesteuert einzurasten. Die Wiedereinrastung ist pneumatisch, hydraulisch, elektromechanisch oder mechanisch realisierbar.

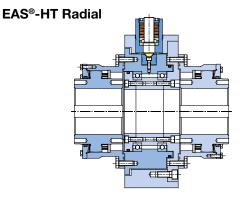
EAS®-HT mit mechanischer Ausrastung



Mechanische Ausrastvorrichtung bei den EAS®-Elementen.

Die EAS®-Elemente können einzeln mechanisch ausgerückt werden.

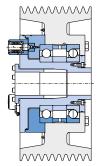
EAS®-HT mit Einrasttopf



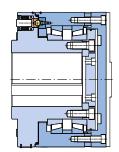
Einrasten ohne Hilfsmittel.

Automatische Einrastvorrichtung für geringe Betriebsdrehzahlen. Direkte Überlastabfrage mit einer Schaltscheibe ist möglich.

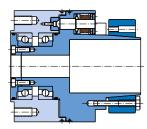
EAS®-HT Radial für kleine Bauraumlängen und geringe bis mittlere Betriebsdrehzahlen.



EAS®-HT Optionen


EAS®-HT mit integrierten Antriebselementen

EAS®-HT, integrierter Anbau von Ketten- und Zahnrädern, Keilriemenscheiben, usw.


EAS®-HT für Walzgetriebe

Höchste Drehmomente bei kleinsten Durchmessern. Die Alternative zu hydraulischen Spannsätzen und Brechbolzen in Walzwerken.

Reibschlüssige Welle-Nabe-Verbindung

Reibschlüssige Welle-Nabe-Verbindungen:

- Spannring (siehe Abbildung)
- Schrumpfscheibe
- Ölpressverband

EAS®-HT Tieftemperaturausführung

Sicherer Überlastschutz bei sehr tiefen Temperaturen bis -48 °C.

(Bitte fragen Sie hierzu separat an).

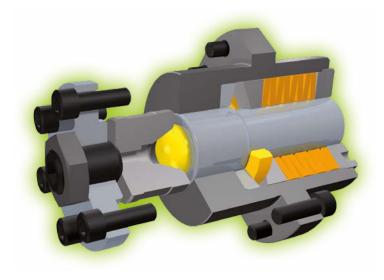
ATEX-Ausführung

EAS®-HT Sicherheitskupplungen sind auch in ATEX-Ausführung gemäß Richtlinie 94/9 EG (ATEX 95) lieferbar.

(Bitte fragen Sie hierzu separat an).

EAS®-Element

Verwendung


- ☐ EAS®-Elemente zum Einbau in zwei zueinander gelagerte Flansche oder zur Intergration in bereits vorhandene Konstruktionen
- ☐ als Bauteil/ Bestandteil der EAS®-HT Sicherheitskupplungen
- ☐ für kundenspezifische Konstruktionen

Anwendungen

- □ Förderbänder
- ☐ Brecher
- ☐ Walzwerke
- ☐ Untertagebau/ Bergbau
- □ Rohstoffgewinnung

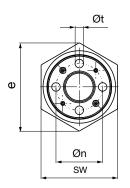
Vorteile/Nutzen

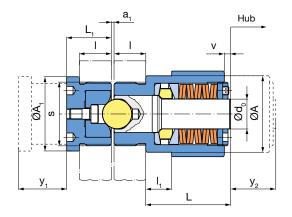
- ☐ Sicherer Überlastschutz
- ☐ flexibel und modular einsetzbar
- ☐ höchste Leistungsdichte
- ☐ Auslösekräfte einstellbar
- ☐ einfache und schnelle Einrastung
- ☐ große Anzahl an Ausrastvorgängen

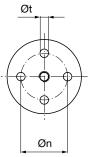
Rostfreie Ausführung auf Anfrage

Funktion:

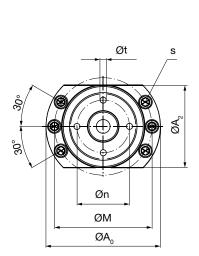
Formschlüssige Übertragung von Umfangs- und Axialkraft. EAS®-Elemente trennen bei Überlast mechanisch An- und Abtrieb bei freiem Auslauf. Wiedereinrastung der einzelnen Elemente manuell (automatische Wiedereinrastung auf Anfrage).

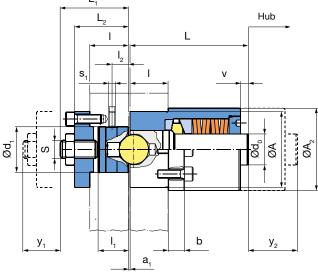

Der Katalog enthält grundlegende Informationen zur Vorauswahl und Dimensionierung.

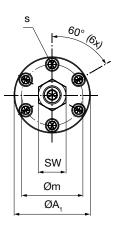

Für detaillierte Informationen zu Auswahl, Auslegung, Montage, Inbetriebnahme und Wartung steht die Einbauund Betriebsanleitung zur Verfügung.


EAS®-Element

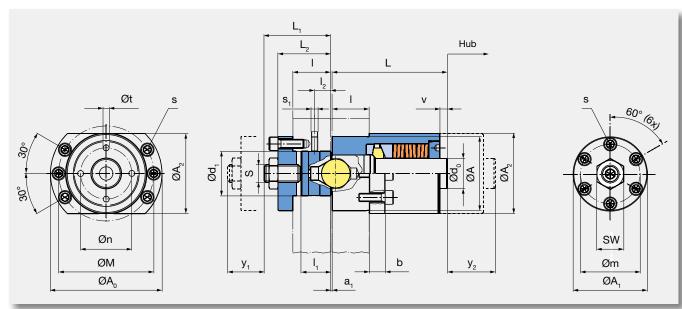
Standard






Type 440._04.0 Größe 02 bis 01

Type 440._04.0 Größe 0 bis 2



Verstärkt

Type 441.604.0 Größe 0 bis 2

EAS®-Element

Technische Daten			Größe					
				02	01	0	1	2
	Type 440.404.0	F _{u min}	[kN]	0,22	1	1,8	5	4
	(Drehmomentbereich niedrig)	F _{u max}	[kN]	0,54	2	5	10	11
	Type 440.504.0	F _{u min}	[kN]	0,5	1,25	3,75	7,5	10
Umfangskraft	(Drehmomentbereich mittel)	F _{u max}	[kN]	1,4	2,5	7,5	15	30
Omangskran	Type 440.604.0	F _{u min}	[kN]	1,2	2,5	7,5	15	30
	(Drehmomentbereich hoch)	F _{u max}	[kN]	2,5	5	15	30	60
	Type 441.604.0	F _{u min}	[kN]	-	-	19	38	75
		F _{u max}	[kN]	-	-	38	75	150
	Type 440.404.0 (Drehmomentbereich niedrig)	F _{ax min}	[kN]	0,2	0,9	1,62	4,5	3,6
		F _{ax max}	[kN]	0,48	1,8	4,5	9	9,9
	Type 440.504.0 (Drehmomentbereich mittel)	F _{ax min}	[kN]	0,45	1,12	3,37	6,75	9
Axialkraft		F _{ax max}	[kN]	1,26	2,25	6,75	13,5	27
Axidikidit	Type 440.604.0 (Drehmomentbereich hoch)	F _{ax min}	[kN]	1,08	2,25	6,75	13,5	27
		F _{ax max}	[kN]	2,25	4,5	13,5	27	54
	Type 441.604.0	F _{ax min}	[kN]	-	-	10	20	40
	Verstärkte Ausführung	F _{ax max}	[kN]	-	-	20	40	80
Hub des Bolzens bei Überlast [mm]		[mm]	2,5	4	6	8	12	
Gewichte [kg]		[kg]	0,25	0,6	1,75	4,1	11,3	

Maße			Größe		
[mm]	02	01	0	1	2
A H8	28	38	55	75	100
A _o	-	-	85	110	150
A ₁	28	35	55	75	100
\mathbf{A}_{2}	-	-	55	75	108
a ₁	1,0	1,5	2	2	3
b	-	-	12	15	20
d _o	10	14	20	30	40,6
d ₁ H8	-	-	30	40	60
е	31,2	41,6	-	-	-
L	28	40	73	96	160
L,	15	21	52	65	80
L ₂	-	-	42	51	70
ı	12	15	30	40	50

Maße	Größe							
[mm]	02	01	0	1	2			
I ₁	7	10	22	30	40			
l ₂	-	-	12	17	22			
М	-	-	72	95	128			
m	-	-	44	60	80			
n	17	22	31	48	69			
S	-	-	M12	M20	M24			
s	M24x1 1)	M30x1,5 ²⁾	M6 3)	M8 4)	M12 5)			
s ₁	-	-	M5	M6	M8			
sw	27	36	19	30	36			
t	3	4	5	6	8			
v	2	3	3	4	15			
У ₁ ⁶⁾	12	15	8	10	10			
y ₂ ⁶⁾	16	21	38	50	65			

Maß- und Konstruktionsänderungen vorbehalten

EAS®-Element Standard

Bestellnummer

4 . 0 0 / 4 4 0 Größe Drehmomentbereich niedrig 02 5 01 mittel 0 hoch 6 1

Beispiel: Bestellnummer 0 / 440.504.0

- 1) Anzugsmoment $M_A = 40 \text{ Nm}$ 2) Anzugsmoment $M_A = 60 \text{ Nm}$
- 3) Befestigungsschraube DIN EN ISO 4762 10.9 $M_{\Delta} = 9 \text{ Nm}$

EAS®-Element Verstärkt

Bestellnummer

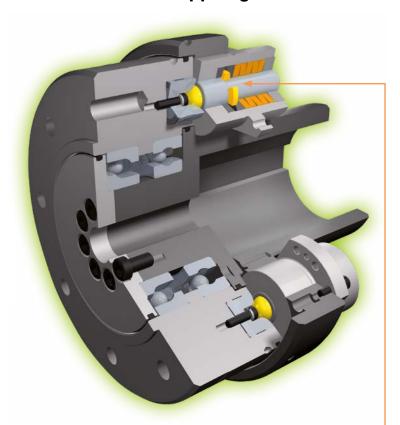
1.6 0 4.0 / 4

Größe

0 1 2

Beispiel: Bestellnummer 0 / 441.604.0

- 4) Befestigungsschraube DIN EN ISO 4762 10.9 $\rm M_{\rm A}$ = 19 Nm 5) Befestigungsschraube DIN EN ISO 4762 10.9 $\rm M_{\rm A}$ = 76 Nm
- 6) y_1 und y_2 sind Ausbaumaße



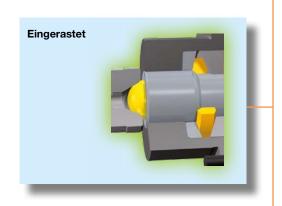
Merkmale

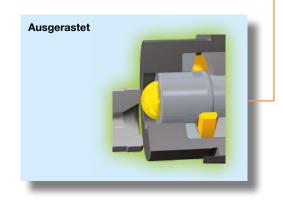
- formschlüssige Drehmomentübertragung nach dem Kugel-Senkungs-Prinzip
- ☐ einstellbares Drehmoment
- ☐ trennt freischaltend
- ☐ einfache Wiederinbetriebnahme
- □ robust
- □ langlebig

Rostfreie Ausführung auf Anfrage

Ausführung

Sämtliche Teile der Kupplung sind aus Stahl gefertigt. Basisbauteile der EAS-HT Sicherheitskupplungen haben eine zinkphosphatierte Oberfläche, die eine Korrosionsschutzbasis für weitere Oberflächenbehandlungen darstellt.


Die Kupplungen der Type 4050, 4060 sind für Öllauf geeignet.


Das Grenzdrehmoment für Überlast an der Kupplung kann durch Verändern der Tellerfedervorspannung eines jeden Überlastelementes eingestellt werden.

Die EAS®-HT Sicherheitskupplungen können im Werk mit dem gewünschten Grenzdrehmoment für Überlast eingestellt werden. Eine nachträgliche Drehmomentänderung kann über das mitgelieferte Einstelldiagramm realisiert werden (siehe jeweilige Einbau- und Betriebsanleitung).

Funktionsprinzip der EAS®-HT Sicherheitskupplung Überlastelemente

- Wird die anteilige Umfangskraft auf den einzelnen Elementen zu groß, bewirkt die resultierende Axialkraft über das Kugel-/Kalotten-System eine axiale Bewegung des Bolzens und somit eine Trennung der Drehmomentübertragung.
- Die maximale Umfangskraft wird durch Einstellmutter und mayr®-Tellerfedern individuell bestimmt. Dadurch wird das übertragbare Drehmoment festgelegt.
- Durch den axialen Hub des Bolzens (Kugelträger) bewegen sich die Schaltsegmente radial nach außen und bewirken somit eine axiale Freischaltung.
- ☐ Die Wiedereinrastung der Kugel durch Bolzenhub in Richtung Kalotte erfolgt manuell oder mittels mayr® Wiedereinrastvorrichtung (pneumatisch, hydraulisch, elektromechanisch oder mechanisch).

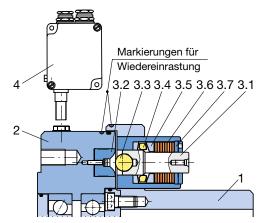
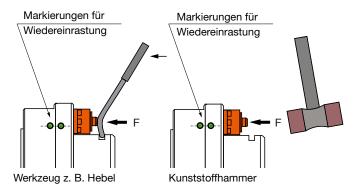



Bild 2: EAS®-Elementkupplung ausgerasteter Zustand

Vorgänge bei der Drehmomentabschaltung durch Überlast:

Bei Überlast verdrehen sich Nabenteil 1 und Abtriebsflansch 2 gegeneinander, die Bolzen 3.1 der Überlastelemente werden über die Steuersegmente 3.4 gegen die Kraft der Tellerfedern 3.6 aus den Druckstücken 3.2 gedrückt. Die Steuersegmente 3.4 wandern über die Schaltkanten der Bolzen 3.1 radial nach außen und halten die Bolzen 3.1 in ihrer ausgerasteten Stellung (siehe Bild 2). Die formschlüssige Verbindung vom Nabenteil 1 und Abtriebsflansch 2 ist aufgehoben. Die ursprünglich gekuppelten Massen können frei auslaufen. Die elektrische Abschaltung des Antriebes erfolgt über eine Drehzahlüberwachung 4.

Wiedereinrastung:

Nabenteil 1 und Abtriebsflansch 2 in die richtige Winkelstellung zueinander drehen (Wiedereinrastposition erkennbar durch Markierungsbohrungen am Außendurchmesser der Kupplung, Bild 3). Durch axialen Druck auf das Bolzenende werden die Bolzen 3.1 wieder in ihre eingerastete Stellung gebracht. Die Kupplung ist dann wieder betriebsbereit, wenn alle Überlastelemente der Kupplung eingerastet sind.

Bild 3

Wartung

Die EAS®-HT Sicherheitskupplungen erfordern keine besonderen Wartungsarbeiten. Sie sind weitgehend gegen Staub und Feuchtigkeit abgedichtet, mit einer Erst-Fettfüllung versehen und dadurch weitgehend wartungsfrei.

Schmierung der EAS®-Elemente: Eine detaillierte Beschreibung entnehmen Sie bitte der jeweiligen Einbau- und Betriebsanleitung (unter www.mayr.com). Lediglich bei sehr starkem Staub- und Schmutzanfall oder bei extremen Umgebungsbedingungen können besondere Wartungsarbeiten erforderlich werden.

In diesem Fall bitten wir um Rücksprache mit dem Werk.

Befestigung auf der Welle:

Die EAS®-HT Sicherheitskupplungen werden serienmäßig mit Fertigbohrung und Nute nach DIN 6885/1 P9 geliefert. Die axiale Fixierung der Kupplung auf der Welle kann z. B. mit einer Scheibe und einer Schraube, eingedreht in das Zentriergewinde der Welle, erfolgen.

Optional liefern wir eine reibschlüssige Welle-Nabe-Verbindung (siehe EAS®-HT Optionen Seite 19).

Vorauswahl der Überlastkupplung

Antriebsstränge im Schwermaschinenbau sind robust und für rauen Betrieb konzipiert. Im Gegensatz zu Anlagen mit servomotorischen Antrieben sind Drehmomentverläufe und das Systemverhalten oft nicht exakt zu bestimmen.

Häufig sind nur die Antriebsleistung des Motors und das zulässige max. Drehmoment am Getriebeausgang bekannt.

Mit bewährten Betriebsfaktoren lassen sich abhängig von der Anwendung geeignete Kupplungsgrößen vorauswählen.

Vorauswahl

$$T_{N} = \frac{9550 \times P}{n}$$
 [Nm]

$$T_{G} \approx T_{N} \times K_{R}$$
 [Nm]

Bezeic	Bezeichnung:					
T_N	[Nm]	Nennmoment des Motors				
T_{G}	[Nm]	vorgewähltes Auslösemoment an der Überlastkupplung				
Р	[KW]	Antriebsleistung Motor				
n	[min ⁻¹]	Drehzahl				
K _B	[-]	Betriebsfaktor				

Betrieb	Betriebsfaktoren:					
2,5 - 3	mittlere Stöße	Rührwerke / Pumpen (zähe Flüssigkeiten) / Knetmaschinen / Mischanlagen / Förderbänder / etc.				
3 - 5	hohe Stöße	Schredder / Zentrifugen / Brecher / Walzstraßen / Bau-/ Bergbaumaschinen /etc.				

Die EAS-HT überträgt im Normalbetrieb das eingestellte Überlastmoment formschlüssig. Alle Drehmomente des Normalbetriebes, inklusive Drehmomentspitzen, müssen sicher übertragen werden und dürfen nicht zum Ansprechen der Sicherheitskupplung führen.

Oft sind die tatsächlichen Lastkollektive (Stöße) während des Betriebes (z. B. bei Schreddern / Mischer) nicht bekannt oder können nur mit großem Aufwand in der Anlage gemessen werden.

Mit speziell dafür entwickelter Software ist es möglich, derartige Antriebsstränge auf ihr Verhalten bei Kollision zu simulieren. Voraussetzung hierfür ist, dass sämtliche Angaben bekannt sind:

- ☐ Massenträgheiten
- ☐ Steifigkeiten aller Übertragungselemente, einschließlich der Überlastkupplung
- ☐ Kenngrößen des Motors und Regelkreises

Insbesondere bei lastseitiger Schwingungserregung (z.B. Kolbenverdichter / Schredder / etc.) als auch bei Wechseldrehmomenten bitten wir Sie mit uns Rücksprache zu halten, um einen zuverlässigen und bewährten Überlastschutz für Ihre Produktionsanlagen auszuwählen.

Hierfür wird die Überlastkupplung in Abhängigkeit der Anwendung mit geeigneten Kupplungen kombiniert:

- □ Elastomerkupplung
- □ Lamellenkupplung
- □ Bogenzahnkupplung

Profitieren Sie von unserer langjährigen Markt- und Anwendungserfahrung in den unterschiedlichen Branchen.

Verlagerungsfähigkeit der verschiedenen Wellenausgleichskupplungen

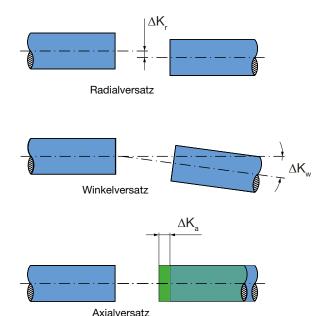
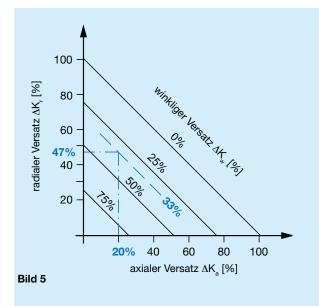


Bild 4

Wellenverlagerung


Fluchtungsfehler zwischen Wellen treten durch Fertigungs- und Montagetoleranzen, Lagerspiel und Temperatureinflüsse auf.

Dadurch können axialer, radialer und winkeliger Wellenversatz entstehen.

Die Wellenausgleichskupplungen der EAS-HT Sicherheitskupplungen können Fluchtungsfehler ausgleichen.

Die Verlagerungsmöglichkeiten der Wellenausgleichskupplungen stellen allgemeine Richtwerte dar (siehe Tabelle "Technische Daten")

In der Anwendung ist ein möglichst genaue Ausrichtung der Wellen anzustreben, damit die Lagerbelastungen auf ein Minimum sinken.

Treten mehrere Versatzarten gleichzeitig auf, beeinflussen sie sich gegenseitig. Die zulässigen Werte der Verlagerung sind voneinander abhängig. Die Summe der tatsächlichen Verlagerungen – in Prozent vom Maximalwert – darf 100 % nicht überschreiten.

Beispiel:

EAS $^{\circ}$ -HT lastic, Größe 8 , Type 4053.00400.0

- ☐ Auftretender **Axialversatz**: $\Delta K_a = 0.5$ mm, entspricht **20** % vom zulässigen Maximalwert $\Delta K_a = 2.5$ mm
- □ Auftretender **Winkelversatz**: $\Delta K_w = 0.1$ mm, entspricht **33** % vom zulässigen Maximalwert $\Delta K_w = 0.3$ mm
- Auftretender Radialversatz:
 ΔK_r = 0,14 mm, entspricht 47 % vom zulässigen Maximalwert ΔK_w = 0,3 mm

Produktübersicht

Sicherheitskupplungen/Überlastkupplungen

☐ EAS®-compact®/EAS®-NC

Formschlüssige und absolut spielfreie Sicherheitskupplungen

☐ EAS®-smartic®

Kostengünstige Sicherheitskupplungen mit Schnellmontage

☐ EAS®-Elementekupplung/EAS®-Elemente

Lasttrennende Absicherung von hohen Drehmomenten

□ EAS®-axial

Exakte Begrenzung von Zug- und Druckkräften

☐ EAS®-Sp/EAS®-Sm/EAS®-Zr

Restmomentfrei trennende Sicherheitskupplungen mit Schaltfunktion

□ ROBA®-Rutschnaben

Lasthaltende, reibschlüssige Sicherheitskupplungen

□ ROBA®-contitorque

Magnetische Dauerschlupfkupplungen

☐ EAS®-HSC/EAS®-HSE

High-Speed-Sicherheitskupplungen für Hochdrehzahlanwendungen

Wellenkupplungen

☐ smartflex®/primeflex®

Perfekte Präzisionskupplungen für Servo- und Schrittmotoren

□ ROBA®-ES

Spielfrei und dämpfend für schwingungskritische Antriebe

□ ROBA®-DS/ROBA®-D

Spielfreie, drehsteife Ganzstahlkupplungen

□ ROBA®-DSM

Kostengünstige Drehmoment-Messkupplungen

Elektromagnetische Bremsen/Kupplungen

☐ ROBA-stop® Standard

Multifunktionale Allround-Sicherheitsbremsen

□ ROBA-stop®-M Motorbremsen

Robuste, kostengünstige Motorbremsen

□ ROBA-stop®-S

Wasserdichte, robuste Monoblockbremsen

□ ROBA-stop®-Z/ROBA-stop®-silenzio®

Doppelt sichere Aufzugsbremsen

□ ROBA®-diskstop®

Kompakte, flüsterleise Scheibenbremsen

□ ROBA®-topstop®

Bremssysteme für schwerkraftbelastete Achsen

□ ROBA®-linearstop

Spielfreie Bremssysteme für Linearmotorachsen

□ ROBA®-guidestop

Haltebremse für Profilschienenführungen

□ ROBATIC®/ROBA®-quick/ROBA®-takt

Arbeitsstromkupplungen und -bremsen, Kupplungsbremsaggregate

Gleichstromantriebe

□ tendo®-PM

Permanentmagneterregte Gleichstrommotoren

Chr. Mayr GmbH + Co. KG Eichenstraße 1, D-87665 Mauerstetten Tel.: +49 83 41/8 04-0, Fax: +49 83 41/80 44 21 www.mayr.com, E-Mail: info@mayr.com

Service Deutschland

Baden-Württemberg

Esslinger Straße 7 70771 Leinfelden-Echterdingen Tel.: 07 11/45 96 01 0

Fax: 07 11/45 96 01 10

Hagen

Im Langenstück 6 58093 Hagen Tel.: 0 23 31/78 03 0

Fax: 0 23 31/78 03 25

Bayern

Eichenstraße 1 87665 Mauerstetten Tel.: 0 83 41/80 41 04 Fax: 0 83 41/80 44 23

Kamen

Lünener Straße 211 59174 Kamen Tel.: 0 23 07/23 63 85 Fax: 0 23 07/24 26 74 Chemnitz

Bornaer Straße 205 09114 Chemnitz Tel.: 03 71/4 74 18 96 Fax: 03 71/4 74 18 95

Nord

Schiefer Brink 8 32699 Extertal Tel.: 0 57 54/9 20 77 Fax: 0 57 54/9 20 78 Franken

Unterer Markt 9 91217 Hersbruck Tel.: 0 91 51/81 48 64 Fax: 0 91 51/81 62 45

Rhein-Main

Hans-Böckler-Straße 6 64823 Groß-Umstadt Tel.: 0 60 78/7 82 53 37 Fax: 0 60 78/9 30 08 00

Niederlassungen

China

Mayr Zhangjiagang Power Transmission Co., Ltd. Changxing Road No. 16, 215600 Zhangjiagang Tel.: 05 12/58 91-75 65 Fax: 05 12/58 91-75 66 info@mayr-ptc.cn

Singapur

Mayr Transmission (S) PTE Ltd. No. 8 Boon Lay Way Unit 03-06, TradeHub 21 Singapore 609964 Tel.: 00 65/65 60 12 30

Fax: 00 65/65 60 10 00 info@mayr.com.sg

Großbritannien

sales@mayr.co.uk

Mayr Transmissions Ltd. Valley Road, Business Park Keighley, BD21 4LZ West Yorkshire Tel.: 0 15 35/66 39 00 Fax: 0 15 35/66 32 61

Schweiz

info@mayr.ch

Mayr Kupplungen AG Tobeläckerstraße 11 8212 Neuhausen am Rheinfall Tel.: 0 52/6 74 08 70 Fax: 0 52/6 74 08 75

Frankreich

Mayr France S.A.S. Z.A.L. du Minopole Rue Nungesser et Coli 62160 Bully-Les-Mines Tel.: 03.21.72.91.91 Fax: 03.21.29.71.77 contact@mayr.fr

USA

Mayr Corporation 4 North Street Waldwick NJ 07463

Tel.: 2 01/4 45-72 10 Fax: 2 01/4 45-80 19 info@mayrcorp.com

Italien

Mayr Italia S.r.l. Viale Veneto, 3 35020 Saonara (PD) Tel.: 0498/79 10 20 Fax: 0498/79 10 22 info@mayr-italia.it

Vertretungen

Australien

Regal Beloit Australia Pty Ltd. 19 Corporate Ave 03178 Rowville, Victoria Australien

Tel.: 0 3/92 37 40 00 Fax: 0 3/92 37 40 80 salesAUvic@regalbeloit.com

Polen

Wamex Sp. z o.o. ul. Pozaryskiego, 28 04-703 Warszawa Tel.: 0 22/6 15 90 80 Fax: 0.22/8 15.61.80 wamex@wamex.com.pl Indien National Engineering

Company (NENCO) J-225, M.I.D.C. Bhosari Pune 411026 Tel.: 0 20/27 13 00 29 Fax: 0.20/27 13 02 29 nenco@nenco.ora

info@mayrkorea.com

Südkorea

Mayr Korea Co. Ltd. Room No.1002, 10th floor, Nex Zone, SK TECHNOPARK, 77-1, SungSan-Dong, SungSan-Gu, Changwon, Korea

Tel.: 0 55/2 62-40 24 Fax: 0 55/2 62-40 25

MATSUI Corporation 2-4-7 Azabudai Minato-ku Tokyo 106-8641 Tel.: 03/35 86-41 41 Fax: 03/32 24 24 10 k.goto@matsui-corp.co.jp

Taiwan

German Tech Auto Co., Ltd. No. 28, Fenggong Zhong Road, Shengang Dist., Taichung City 429, Taiwan R.O.C. Tel.: 04/25 15 05 66

Fax: 04/25 15 24 13 abby@zfgta.com.tw

Niederlande

Groneman BV Amarilstraat 11 7554 TV Hengelo OV Tel.: 074/2 55 11 40 Fax: 074/2 55 11 09

aandrijftechniek@groneman.nl

Tschechien

BMC BALTAS s. r. o. Hviezdoslavova 29 b 62700 Brno

Tel.: 05/45 22 60 47 Fax: 05/45 22 60 48 info@bmcbaltas.cz

Weitere Vertretungen:

Belgien, Brasilien, Dänemark, Finnland, Griechenland, Hongkong, Indonesien, Israel, Kanada, Luxemburg, Malaysia, Neuseeland, Norwegen, Österreich, Philippinen, Rumänien, Russland, Schweden, Slowakei, Slowenien, Südafrika, Spanien, Thailand, Türkei, Ungarn

Die komplette Adresse Ihrer zuständigen Vertretung finden Sie unter www.mayr.com im Internet.